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ABSTRACT 

Military and civilian drones in use today have been designed to accomplish a 

wide array of missions. From an engineering perspective, they are very complex systems 

that incorporate technologies from a wide range of specialized disciplines. Not 

surprisingly, operating these complex systems requires advanced and extensive training.  

This thesis research proposes a simple and intuitive user interface utilizing a Leap 

Motion sensor that allows a drone operator to exploit his/her skills more intuitively. 

The Leap Motion sensor tracks the position and orientation of the user’s hand(s), 

which, in turn, controls the motion of a drone. The acquisition and processing of the 

Leap Motion sensor data were performed using a programming language called 

Processing. In this research work, an infrared-controlled helicopter and a radio 

frequency-controlled quadrotor were operated using this interface. For the user 

interface, several prototype electronic circuits based on Arduino microcontroller 

boards, as well as Processing programs, were developed and integrated with the 

Leap Motion sensor. The complete user interface was successfully tested and 

demonstrated. It was observed that the user interface makes the control of both drone 

types easier and more intuitive. 
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I. INTRODUCTION 

A. HISTORY AND APPLICATIONS OF UNMANNED AERIAL VEHICLES 

An unmanned aerial vehicle (UAV), hereafter referred to simply as a drone, is a 

vehicle that does not have a human pilot on board and is capable of being controlled 

remotely [1]. Drones can autonomously perform complex tasks, such as takeoff and 

landing, flight stabilization, and point-to-point navigation. They use embedded systems 

incorporating a variety of onboard sensors, such as inertial sensors, cameras, and 

GPS [2]. 

According to Jha in [3], drones first appeared in the mid-1800s. Austria used an 

unmanned balloon loaded with bombs to attack Venice, Italy [3]. The exact origin of the 

use of drones is difficult to determine, although WWI saw the first real introduction of an 

unmanned aircraft in the military service. Toward the end of WWI, the U.S. Army was 

working on what it called the Aerial Torpedo, shown in Figure 1, a pilotless, small, 

biplane bomber that essentially worked as a kamikaze drone. The British Army’s Aerial 

Target, introduced at the same time, was a remotely-controlled, unmanned monoplane 

that demonstrated the use of radio signals to direct an aerial bomb [2]. During the initial 

years of WWII, the OQ-2, which is the military mission designation for an observation 

unmanned aerial vehicle, was the first remote controlled aircraft manufactured in the 

United States by the Radioplane Company. The follow-on model produced by this 

company was the OQ-3; it was the most prevalent pilotless target aircraft found in U.S. 

service during WWII [2]. In 1973, after the Yom Kippur war, the Israel Aircraft 

Industries (IAI) developed the Scout drone, shown in Figure 2. Its two principal 

characteristics were a very low radar signature and a compact size, which resulted in a 

challenging target to engage in combat, as well as in targeting practice. In the 1990s, with 

the availability of GPS, drones were freed from their dependency on inaccurate onboard 

navigation systems, which were generally based on computerized dead-reckoning [2]. 

This allowed Abraham Karem to develop the General Atomics’ GNAT-750, known 

to be the predecessor of the Predator, shown in Figure 3, which was capable of 

aerial reconnaissance and tactical strikes. By the year 2001, the Predator was the most 
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common remotely-piloted aircraft employed by the United States Air Force and the 

Central Intelligence Agency in support of military operations in Afghanistan against 

Al-Qaeda [4].  

 

Figure 1.  Aerial Torpedo. Source: [2]. 

 

Figure 2.  IAI Scout. Source: [2]. 

 

Figure 3.  Predator B. Source: [2]. 
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Over the course of time, as technology evolved, drone capabilities were extended 

mainly due to the developments in electronics, guidance and navigation, 

communications, and control [5]. Among the numerous military applications where 

drones are currently used, the most basic functions include intelligence, reconnaissance, 

and surveillance; however, military drones are also designed to accomplish combat-

related missions, such as target tracking and deployment of defensive and offensive 

weapon systems [3]. 

Drone designs and applications are many; therefore, they can be classified in 

numerous different ways. Most of the literature is in agreement that drones can be 

classified according to their range of action: high altitude, long endurance (HALE); 

medium altitude, long endurance (MALE); tactical, close-range; and mini-, micro-, and 

nano-scale drones. Drones are also classified by their configuration: fixed wing, flapping-

wings, blimps, and rotary wing [2]. 

Today, drones are widely used in many different civilian applications for solving 

problems and overcoming challenges across numerous industries [1], such as: 

 Remote sensing (electromagnetic spectrum analyzers, gamma ray 
sensors), 

 Oil, gas, and mineral exploration, 

 Domestic surveillance, 

 Policing activities by law enforcement agencies,  

 Forest fire detection, 

 Precision search and rescue missions, 

 Security of pipelines, power lines, coastline and borders monitoring for 
illegal immigration and imports, 

 Delivery systems, 

 Scientific research in atmospheric environments. 



 4

B. PROBLEM STATEMENT 

Military drones in use today have been designed to accomplish a wide array of 

critical missions. From an engineering standpoint, they are very complex systems that 

incorporate technologies from a wide range of specialized disciplines, including 

aerodynamics, structures, propulsion, avionics, and sensors, to name just a few examples. 

To operate these complex systems requires advanced user interfaces, which may consist 

of multi-function displays, audio systems, as well as hand- and foot-activated controls. 

Examples of these are switches, buttons, knobs, throttle, joystick, and rudder pedals. 

Operators of today’s complex drone systems are highly skilled and have received 

extensive and dedicated training to learn how to pilot modern drones. With this in mind, 

it is a worthwhile endeavor to explore alternative ways to simplify the user interface with 

the aim of reducing the degree of skill and training required to operate today’s drones. 

New interface technologies, which are always being released to the market, should be 

evaluated to determine if they could be used effectively to operate a drone. 

C. THESIS GOALS 

The main goal of this thesis research is to design a simple and intuitive user 

interface to pilot advanced drone systems. A main avenue of research will be the 

integration of a device known as the Leap Motion sensor. The sensor sits on the desktop 

and monitors a user’s hand(s) to provide relative position and orientation information. 

The measured data of one’s hands can potentially be used to direct the motion of a 

connected drone. 

This investigation has three subsidiary goals, as identified below: 

1. Establish an interface between the Leap Motion sensor and the computer 
that allows starting the process of transmitting control commands to the 
drone. 

2. Design and test an algorithm to process the data acquired by the motion 
sensor. 

3. Take over or replace the remote controller of a radio frequency/infrared 
(RF/IR) controlled drone by means of modifying its internal circuitry or 
synthesizing communication protocols. 
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D. ORGANIZATION  

This thesis is divided into four chapters. In addition to this introduction chapter, a 

description of the Leap Motion sensor, the Arduino microcontroller, and Processing 

software programing language is provided in Chapter II. The system design and 

integration of the Leap Motion sensor with a desktop computer is discussed in Chapter 

III. Two different approaches used to take over an IR-controlled helicopter drone and a 

RF-controlled quadrotor drone are also discussed in Chapter III. A summary and a 

discussion of future research derived from this project are provided in Chapter IV. 
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II. INPUT DEVICE AND SOFTWARE 

The hardware and software selected to accomplish the stated thesis research goals 

are presented in this chapter. For the hardware, the Leap Motion sensor was utilized as it 

provided a user-friendly interface that could be used for drone motion control. Additional 

hardware utilized were microcontrollers from the Arduino series. These devices are low-

cost, easy to integrate with external hardware, and come with a wide range of 

documentation and example applications. To integrate the hardware, an open-source 

programming language known as Processing was used. This software programming 

language was selected because of its similarities with the Arduino software language. 

A. LEAP MOTION SENSOR 

The Leap Motion sensor, shown in Figure 4, consists of three infrared light-

emitting diodes (LED) and two infrared cameras. The cameras track reflected infrared 

light at an operating wavelength of 850 nm, which is outside the visible light spectrum 

[6]. The sensor is used to report precise position coordinates of one’s hands located 

within its field-of-view above the sensor.  

 

Figure 4.  Leap Motion Device. Source: [6]. 

Because of its wide-angle lenses, the interaction area, which takes the shape of an 

inverted pyramid, is approximately 2ൈ2ൈ2 cubic feet, as shown in Figure 5. 
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Figure 5.  Interaction Area of the Leap Motion Sensor. Source: [6]. 

The device sends the acquired sensor data to a connected computer via USB, 

where it is then analyzed using digital image processing algorithms to compensate for 

background objects (such as a person’s head) and ambient light. The final product of this 

process is a three-dimensional (3D) representation of what the device sees, as shown in 

Figure 6. 

 

Figure 6.  Leap Motion 3D Representation. Source: [6]. 

The Leap Motion Application Program Interface (API) provides a collection of 

protocols and routines for developing user applications. The building blocks of the Leap 
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Motion API are three different classes: arms, hands, and fingers. At the same time, each 

of these classes is divided into subclasses with different attributes and properties that 

provide high precision information about position, orientation, and movement of the 

user’s hands. 

One of the more advanced features provided by the Leap Motion API is dynamic 

gesture recognition. This is achieved by analyzing over time the movement of individual 

fingers, hand rotation, and arm orientation [6]. The Leap Motion API identifies four basic 

gestures as shown in Figure 7. 

 

Figure 7.  Leap Motion Basic Dynamic Gestures. Source: [6]. 

Furthermore, in [7], static gestures are proposed to be utilized by the human 

operator to perform different tasks. Static gesture recognition is developed based on 

relative distance between one’s fingers and the center of the hand. Examples of static 

gestures are shown in Figure 8. 
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Figure 8.  Leap Motion Static Gestures. Source: [7]. 

B. ARDUINO MICROCONTROLLER 

An Arduino microcontroller is a circuit board that can be programmed to do many 

different things. It can read information from sensors, like motion sensors, photo sensors, 

pressure sensors, or GPS receivers. Outputs are also available to control devices, like 

motors and servos. A number of popular communication protocols are also available on 

the microcontroller, such as serial, inter-integrated circuit (I2C), controller area network 

(CAN), and serial peripheral interface (SPI). The Input/Output (I/O) characteristics of the 

Arduino-series of microcontroller boards make it easy for anyone to connect the physical 

world around us to the digital world. In summary, an Arduino microcontroller is an open-

source development platform. It integrates a software and hardware interface that is easy 

to program [8]. 

For this thesis work, we use two models of Arduino boards, but there are many 

different models available in the market. The major differences between them are built-in 

features like Wi-Fi, Bluetooth, Ethernet, number of I/O ports, and amount of memory.   

The boards used in this thesis research are the Arduino Uno, shown in Figure 9, 

which is the most common microcontroller board on the market. The other is the Arduino 

Mega, shown in Figure 10. This one is used mainly for more advanced projects. The 
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Arduino Mega has a more powerful processor and provides additional I/O pins, which are 

features not found on the less capable Arduino Uno board. 

 

Figure 9.  Arduino Uno. Source: [8]. 

 

Figure 10.  Arduino Mega. Source: [8]. 

C. PROCESSING SOFTWARE 

Processing is an open-source software application used by developers to write, 

edit, compile, and execute Java code. This software was developed by Reas and Fry in 

the MIT Media Lab in 2001 [9]. 



 12

The Processing functions provide the tools for the elaboration of on-screen 

graphics, which enables immediate visual feedback of what the code is executing in real 

time. Processing employs the same principles, structures, and concepts as many other 

programing languages, like Java for example.  

Although its syntax is based on Java, Processing adds custom features related to 

graphics and collaboration [10]. From Figure 11, we see that Processing has a large 

family of related languages and programming environments. In the decade of the 1980s, 

one of the most important programming languages that influenced Java, and ultimately 

Processing, was the programming language C; however, in comparison with C, 

Processing greatly reduces the number of lines of code needed to implement a program. 

In 2003, Barragan [11] initiated a project called Wiring, which was based on the 

Processing language and was destined to become a programing framework for different 

kinds of microcontrollers. The Arduino project, based on Wiring, uses the Processing 

Integrated Development Environment (IDE) with a primitive version of the C-

programing language.  

 

Figure 11.  Processing Related Programing Languages. Source: [9]. 
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III. SYSTEM DESIGN AND IMPLEMENTATION 

To interface the Leap Motion sensor with a computer in order to control a drone, 

it was necessary to carry out the design, development, and testing of several systems that 

utilize both hardware and software components. For this thesis research, an Arduino-

embedded microcontroller was programmed to process commands it received from a 

desktop computer and to generate the commands required to control the motion of a 

drone. First, prototype electronic circuits using the microcontroller and other peripheral 

hardware were constructed and tested. Second, in order to track the position and 

orientation of the drone, an optical tracking system was developed from a low-cost 

webcam, which was readily available in the laboratory. This aspect of the design required 

testing of available image processing algorithms to find the best approach to track the 

drone within the webcam’s field-of-view. Third, the Leap Motion sensor was integrated 

into the design using a software program developed for this thesis research. The system 

diagram, shown in Figure 12, presents all of the major components developed and 

integrated for the demonstration of the drone controller. 

 

Figure 12.  Drone Control System with All Major Components 
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This chapter is divided as follows. The synthesis of the command signals required 

to operate an IR-controlled drone helicopter is explored in Section A. Several prototype 

test circuits were constructed to 1) capture and store the control signals for the IR-

controlled drone, and 2) synthesize the required command signals using embedded 

hardware and software. Also described in this section is the manner in which the Leap 

Motion sensor was integrated into the design using the open-source programming 

language called Processing. In Section B, an improved open-loop control system is 

proposed using a quadrotor to increase precision in control. In Section C, the description 

and testing of a closed-loop control system based on one webcam is discussed. This 

alternative design employed one stationary camera to track and maintain the orientation 

of a drone at a fixed location. The information derived from the fixed webcam provided 

sensor information to enable automatic control of the drone position and orientation 

within the camera’s field of view.   

A. OPEN-LOOP CONTROL OF THE FQ777 INFRARED-CONTROLLED 
HELICOPTER 

1. Introduction 

The main objective of this section was to study and develop the prototype 

hardware and software required to control the motion of a drone.   In order to achieve this 

goal, we first had to understand how the drone was controlled. In other words, we needed 

to understand the communication protocol between the remote controller and the drone 

and to come up with a solution to synthesize this type of communication. Due to time, 

budget, and hardware availability, a small, low-cost, IR-controlled helicopter was utilized 

for this part of the project.   

2. Implementation 

In search of a low-cost helicopter that met the basic requirements, which were that 

it was IR-controlled and have at least three control channels, we decided to use the 

FQ777 IR control helicopter, shown in Figure 13. Some of its characteristics are 

presented in Table 1. 
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Figure 13.  FQ777 IR Controlled Helicopter. Source: [12]. 

Table 1.   Characteristics of the FQ777 IR-Controlled Helicopter. Source: [12]. 

Brand Name SBEGO 
Type Helicopter 
Model FQ777-610  
Controller Mode MODE 2 
State of Assembly Ready-to-fly (RTF) 
Fly Time 8 min 
Charging Voltage 3.7 V 
Dimensions 9.05 ൈ 5.71 ൈ 3.9 inches 
Motor Type Brush Motors 
Material Plastic, Metal 
Power Source Electric 
Remote Distance 10 - 12 meters 
Control Channels 3 Channels 

Feature 
6-axis gyro control 

system 

 

From Figure 13, we see that the FQ777 has coaxial rotors; this means a pair of 

helicopter rotors mounted one on top of the other on concentric independent and counter-

rotating shafts. This type of configuration provides balance of torques around the central 

axis, reduction of noise, and also prevents the aerodynamic phenomenon called 

Dissymmetry of Lift that affects helicopters with simple rotor configurations [13]. 
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From Table 1, we observe that the FQ777 is a three-channel coaxial helicopter, 

which means that there are three channels on the remote controller, shown in Figure 14, 

to control the motion of the helicopter. On this type of controller, channel one controls 

the throttle (up/down), channel two controls the yaw (left/right), and channel three 

controls the pitch (forward/backward). A small horizontal propeller at the tail that rotates 

clockwise or counter-clockwise controls the forward and backward movement, 

respectively. From the flying tests performed, we observed that the hovering was 

extremely stable, but forward and backward speeds were limited.  

 

Figure 14.  FQ777 Remote Controller 

To investigate the remote controller in more detail, we opened it and found that it 

had three infrared light emitter diodes (IR LED) mounted at the top of the circuit board, 

as shown in Figure 15. These LEDs were used to transmit IR signals to the helicopter. In 

general, better performance is achieved when a greater number and quality of IR emitters 

is utilized in the transmitter. Apart from the number of IR LEDs, we were not able to get 

more useful information from this preliminary and simple investigation. 
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Figure 15.  FQ777 Remote Controller Circuit Board 

The most common consumer IR device used in our daily life is the television 

remote controller, which uses the infrared electromagnetic spectrum to wirelessly 

communicate instructions to the television. Over time, different television manufacturers 

have developed different communication standards; this is evidenced from the fact that a 

remote controller from a Sony television cannot be used to control a Panasonic television 

because they use different transmission protocols. This information led us to assume that 

it was more likely that the different remote-controlled drone manufacturers also use their 

own proprietary IR transmission protocols. Later in the testing and development, this 

assumption was proved to be correct. 

At this point, we assumed that there were a variety of IR transmission protocols 

used by each manufacturer, and we had not yet identified the one used by the FQ777. We 

needed to identify a way to be able to send the IR commands from the computer to 

control the helicopter. For this matter, two different options were explored: 

1. Use a signal analyzer or oscilloscope to visually evaluate the binary pulses 
to determine the transmission protocol, or 

2. Use an IR signal capture device or circuit to capture the IR signals from 
the remote controller and store them in a file on a computer or Arduino. 
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While the first option seemed to be the most logical path to follow, it turned out to 

be the more challenging to achieve because of the large variety of parameters present in 

an IR transmission protocol. It was necessary to visually resolve the encoding standard: 

pulse coded, space coded, or shift coded. Then the start pulse signal needed to be located. 

It was also necessary to determine the number of bits used to transmit a single signal 

frame: 8, 12, 16, 20, 24, or 32. Then it was required to define the time used to represent a 

logical one and zero, respectively. Finally, we needed to determine the time between bits. 

As an example of this process, an oscilloscope image of the IR signal frame 

corresponding to the full throttle command of the FQ777 remote controller is shown in 

Figure 16. A complex bit pattern would have to be captured and decoded to reverse-

engineer the protocol, which made this approach very difficult. The second option was 

considered to be the better choice and much simpler to apply. 

 

Figure 16.  IR Signal from the FQ777 Full Throttle Command 

a. IR Signal Capture 

To employ the second option, we needed a device or circuit to capture IR signals. 

For this purpose, a simple circuit suggested by Angel [14] was built. It was interfaced to 
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an Arduino Uno. The operation of the signal capture circuit was tested by sending 

different IR commands with the FQ777 remote controller to be captured and stored in the 

memory of the microcontroller. The captured signal was then retransmitted by the 

Arduino microcontroller to verify if the helicopter was able to decode the raw data. This 

test was successful with all of the IR commands that were examined. An example of a 

typical IR command code that was captured with the IR signal capture circuit is shown in 

Table 2. This sequence of numbers represents the byte values recorded by the test circuit 

when the left joystick was in the down position and the right joystick was in the center 

position. 

Table 2.   Example Capture of IR Command 

800 750 750 800 700 850 300 500 650 500 300 450 650 550 250 500 300 

500 250 500 300 500 650 500 300 500 650 500 300 850 300 500 250 900 

650 500 650 900 250 

 

b. IR Command Code Matrix and IR Signal Emitter 

The limitation of the Arduino Uno microcontroller used in the IR signal capture 

circuit is that it can only store one IR command in memory at a time. Rather, we needed 

to store a sufficient number of codes in memory to be able to fly the helicopter with 

sufficient precision. To solve this problem, we created a matrix of codes with each IR 

command represented by a single character, as shown in Table 3. The elements of the 

[10ൈ5ሿ	command matrix represent a set of 50 command codes that are used to transmit 

one of 50 possible corresponding IR commands. This table takes into consideration a 

sufficient level of precision needed to fully control the helicopter and the maximum 

availability of memory in the microcontroller. The corresponding IR commands for each 

element in the command matrix in Table 3 are found in greater detail in Appendix A.  
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The matrix of IR commands, presented in Table 3, was designed by dividing the 

throttle potentiometer of the FQ777 remote controller into ten different levels, with one 

as the lowest and ten the highest. For each of these ten throttle levels, there were five 

different possible IR commands:  

1. Yaw and pitch in the center position, which caused the helicopter to hover 
at a desired height, 

2. Yaw turning right and pitch in the center position, meaning that the 
helicopter turned to the right while maintaining altitude, 

3. Yaw turning left and pitch in the center position, meaning that the 
helicopter turned to the left while maintaining altitude, 

4. Yaw in the center position and pitch forward, meaning that the helicopter 
moved forward while maintaining altitude, and 

5. Yaw in the center position and pitch back, meaning that the helicopter 
moved backward while maintaining altitude. 

The next step was to create a circuit dedicated exclusively to transmitting the raw 

IR command code signals stored in the matrix. The IR signal emitter schematic diagram 

circuit is shown in Figure 17. 

For the circuit shown in Figure 17, we initially intended to use the Arduino Uno, 

but because of serious memory limitations, as well as reduced data processing speed, we 

decided to use the Arduino Mega to obtain more favorable results. 

The Arduino Mega was programed so that when it received a valid command 

code character corresponding to Table 3 via the serial port, it searched for the 

corresponding raw data stored in a list of arrays representing the matrix of IR commands 

previously created from the FQ777 remote controller. The microcontroller then 

transmitted the corresponding IR command via the IR emitters. The Arduino code for the 

IR signal emitter circuit is found in Appendix B. 
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Table 3.   Matrix of IR Commands for the FQ777 

 
THROTTLE RIGHT LEFT FWD BACK 

1 Q A Z e o 

2 W S X f p 

3 E D C g q 

4 R F V h r 

5 T G B i s 

6 Y H N j t 

7 U J M k u 

8 I K b l v 

9 O L c m w 

10 P a d n x 

 

 

Figure 17.  IR Signal Emitter Schematic Diagram 
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At this point we were able to confirm our initial assumption that different remote-

controlled drone manufacturers used their own proprietary IR transmission protocols. For 

this matter, we tried to operate the QS5010 Super Mini IR remote controlled helicopter, 

shown in Figure 18, because it shared all of the basic common characteristics with the 

FQ777. Testing the operation of the IR signal emitter circuit with the QS5010 was not 

successful.   

 

Figure 18.  QS5010 Super Mini IR RC Helicopter. Source: [15]. 

c. Leap Motion Sensor Integration 

In this section, we describe the next step in the development, which was to 

integrate the Leap Motion sensor. To do this, we used a programming language called 

Processing because of its similarities with Arduino. In fact, the appearance of the user 

interface for the IDE for Processing and Arduino are nearly identical.  

In order to interface the Leap Motion sensor with the computer, we incorporated a 

software library called Leap Motion for Processing, designed by Morawiec [16]. This 

library allowed us to receive detailed information, such as position, orientation, and 

movement of the fingertips, center of hands, arms, etc. This information was received in 

the Cartesian coordinates relative to the center point (center IR LED) of the Leap Motion 

sensor’s field-of-view [17], as shown in Figure 19.  

We took into consideration that the Leap Motion sensor was a gesture-based 

interface with sub-millimeter accuracy of 0.7 mm [17], and it very accurately tracked the 

motion of the human hand. Furthermore, according to [18], the human hand exhibits a 
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natural tremor behavior, which is the involuntary movement of muscles. From the study, 

the tremor amplitude was reported to vary between 0.4 mm ± 0.2 mm for children and 1.1 

mm ± 0.6 mm for adults. To avoid the tremor of the hand to transfer into a jittering 

movement of the helicopter, various techniques have been proposed. As an example, 

Hayden [19] proposed to use the Fast Fourier Transformation (FFT) with a band pass 

filter of 0.5 Hz to filter and eliminate the noisy measurement obtained from the Leap 

Motion sensor to control the six degrees-of-freedom (DOF) Jaco Arm manipulator. 

 

Figure 19.  Schematic View of Leap Motion Sensor. Source: [17]. 

The first program we wrote for the Leap Motion sensor was designed to check the 

accuracy of the data acquired and observe if the sensor was able to detect the tremor of 

the human hand. To verify this, we performed an experiment to collect 500 samples in 

the X, Y, and Z axes while holding the right hand in a constant position relative to the 

sensor. The sensor coordinate system in which the measurements were made is shown in 

Figure 20. The results of the experiment are summarized in Table 4, and the Processing 

code used for this experiment is found in Appendix C.  
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Table 4.   Test Results for the Accuracy of the Leap Motion Sensor 

X-axis (cm) Y-axis (cm) Z-axis (cm) 
Median  52.03734400 63.89045550 43.52832200 

Stand. Dev. 0.13955226 0.22426161 0.26207200 
Max 52.27108400 64.38776400 44.00585000 
Min 51.65746000 63.42564400 43.07614500 

  

 

Figure 20.  Leap Motion Sensor Cartesian  
Coordinate Reference. Source: [19]. 

A plot of the data collected during this experiment is shown in Figure 21. We see 

that while holding the hand firmly in a constant position with respect to the sensor, slight 

variations in the X, Y, and Z distance were measured. 

To facilitate integration with the helicopter, an exclusion (or dead) zone was 

defined.   When the hand was detected within this zone, the controller program did not 

command any motion of the drone. This provided a zone by which the operator could 

quickly stop the motion of the helicopter if required. It also created an entry point from 

where to begin operation of the helicopter. The exclusion zone also ensured that the 

helicopter did not respond to data from this region where the sensor was determined to be 

less accurate [19]. The exclusion zone had dimensions 10ൈ10ൈ10 cm from the origin of 

the sensor reference. 
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Figure 21.  Magnitude of the Leap Motion Sensor Tracking  
Points during Stable Hand Test 
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Next, it was necessary to quantize the data obtained from the sensor and map the 

Y-axis distance to the throttle levels of the command matrix in Table 3. To obtain the 

desired quantized result, we used a built-in Processing function called map( ) that 

remapped a number from one range to another. The data type of the output number from 

this function was of type float. For this reason and to avoid jitter in the output, we 

rounded the result by converting it into an integer. As an example, when the output value 

from the map( ) function was 4.43, it was automatically rounded to 4, matching precisely 

the fourth throttle level from the matrix of IR commands for the FQ777. The minimum 

and maximum output values of the function were set to zero and ten, respectively. The 

Processing code used for this part of the experiment is found in Appendix D. 

d. Open-loop System Integration 

The work up to this point has been to design and construct the basic elements 

required for the open-loop operation of the IR helicopter. This required construction, 

programming, and testing of the IR emitter signal prototype circuit using the Arduino 

Mega microcontroller. The other major component developed was the Processing 

language computer program designed to interface the PC with the Leap Motion sensor. In 

the next phase of the development effort, we worked to integrate these basic elements 

into a working prototype demonstration of the drone controller interface. 

In this part of the development, a Processing language program was written to 

encode the hand position above the Leap Motion sensor into a character command from 

Table 3 and transmit it to the Arduino Mega microcontroller. The command characters 

were transmitted via serial communication from the desktop PC to the Arduino 

microcontroller. When a valid command character was received by the microcontroller, it 

was translated into the corresponding IR command and transmitted to the IR helicopter. 

A flow chart of the program that was developed to operate the IR helicopter with the 

Leap Motion sensor is shown in Figure 22. The final Processing language code for 

controlling the helicopter is found in Appendix E.  

The architecture of the open-loop system is shown in Figure 23. It includes all of 

the hardware (Leap Motion sensor, desktop PC, and Arduino board with peripheral 



 27

hardware) and software (Processing and Arduino code) as well as the communication 

protocols used between them. The final result is an open-loop system designed to operate 

the IR helicopter using the Leap Motion sensor. 

 

Figure 22.  Flow Chart of the Processing Program to Control 
the FQ777 
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Figure 23.  Architecture of the System to Control the FQ777 

3. System Testing 

To test the final system design, we first tested each module separately and then 

tested the system as a whole. We began by testing the stability of the interface between 

the Leap Motion sensor and the computer by capturing many data samples at different 

positions of the hand above the sensor. The interface proved to be reliable throughout the 

preliminary analysis of the acquired data. From the Leap Motion tests performed in [19], 

hand positions less than 11.0 cm above the sensor were reported to be less accurate. Our 

observations showed similar results, and we avoided this range of measurements by 

implementing the exclusion zone as described earlier. 

The next step was to test the interface between the computer and the Arduino 

microcontroller. This interface was established via a Universal Serial Bus (USB) with the 

data transmission rate set to 115,200 bits per second (baud). The test performed here was 

designed to repeatedly send a predefined array of characters from the PC to the Arduino 

via the serial port and then to verify if they were received in the same order in which they 

were transmitted. The results of this test were alarming because the sequence of 

characters received by the Arduino was completely random. These results made us 
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realize that we were causing an overflow in the Arduino serial port buffer. This overflow 

occurred because we were writing and sending data much faster than the Arduino was 

able to process. To solve this problem, we modified the code to introduce a 70.0 ms delay 

in the main programming loop. We repeated the test and verified that the buffer overflow 

had been resolved. 

The last step was to verify the operation of the open-loop system with all of its 

parts together. The prototype system was demonstrated to work as designed. During this 

test, we were able to continuously control the FQ777 helicopter for approximately seven 

minutes while controlling the position and orientation of the helicopter as desired.   A 

demonstration of the operation of the IR helicopter using the Leap Motion sensor is 

shown in Figure 24. 

 

Figure 24.  Demonstration of the Operation of the FQ777 Using 
the Leap Motion Sensor 

In summary, we found that we were able to control the IR helicopter by means of 

the Leap Motion sensor. Furthermore, we predict with confidence that the method 

IR Helicopter 

Leap Motion sensor 
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described in this section can be applied to different kinds of IR controlled airborne or 

ground-based vehicles.  

The only limitation observed in this approach was the resolution of the 

programmed command matrix, which depended on the amount of data storage memory 

available in the microcontroller. The resolution affected the range of possible IR signals 

that could be obtained from the two potentiometers of the remote controller. In this 

experiment, we limited the resolution to only ten levels for throttle and one level each for 

pitch and yaw. In the next section of this chapter, we address this problem by 

incorporating a digital potentiometer with a resolution of 156 steps for each control 

channel (throttle, yaw, pitch, and roll). 

B. OPEN-LOOP CONTROL OF THE JJRC H31 QUADROTOR 

1. Introduction 

In the previous section, we demonstrated that it was possible to control an IR 

helicopter by means of the Leap Motion sensor using an IR signal emitter circuit. In this 

section, we explore the possibility of increasing the capabilities of the system designed in 

the preceding section by integrating a quadrotor that was operated through a radio 

frequency (RF) link. The architecture of the proposed system is shown in Figure 25. This 

proposed system has two main advantages. First, since the drone was controlled via an 

RF link, the expected operation range or distance is greater. Second, the quadrotor has 

four flight control channels (throttle, yaw, pitch, and roll). With this added degree of 

motion, we expect to find a greater degree of control. To demonstrate this alternative 

design, we developed a new technique to operate the drone through modification of the 

drone’s remote controller unit without the manipulation of the RF protocol signal. 



 31

 

Figure 25.  Architecture of the System to Control the JJRC H31 

2. Implementation 

In Section A, we demonstrated how to control a three-channel drone (throttle, 

yaw, and pitch), and for this part of the development project we improved the degree of 

control by incorporating one more control channel (roll) into the system. For this reason, 

we decided to use the JJRC H31 quadrotor, shown in Figure 26. Some of its major 

characteristics are presented in Table 5.  

 

Figure 26.  JJRC H31 Quadrotor. Source: [20]. 
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Table 5.   Characteristics of the JJRC H31 Quadrotor. Source: [20]. 

Type Quadrotor 

Brand JJRC 

Model H31 

Motor Type Brushed 

Material Plastic 

Frequency 2.4 GHz 

Control Channels  Four Channels 

Controller Mode Mode 2 

Remote Distance 30 - 40 m 

Battery 3.7 V 

Fly Time 7 - 8 min 

Weight 73 g 

 

From Figure 26, we can see that the H31 quadrotor has an X configuration, 

meaning that there are two frontal motors and two rear motors as opposed to the cross 

configuration that has a pair of motors aligned with the pitch axis while the other two are 

aligned with the roll axis. The X configuration of the H31 makes it more responsive and 

has better overall performance [2].  

The H31 is a four-channel quadrotor. Correspondingly, there are four channels on 

the remote controller, shown in Figure 27, to control the throttle, yaw, pitch, and roll of 

the drone. Channel one controls the throttle, channel two controls the yaw, channel three 

controls the pitch, and channel four controls the roll.  

Following the same steps as in the previous section, we decided to open the 

remote controller and found that the blue antenna extending from the case and the two 

upper knobs were not attached to the circuit board. We concluded that they were merely a 

decoration on the remote controller. Inspecting the electronic printed circuit board inside 

the remote controller, we found two dual-axis potentiometer joysticks, which 

corresponded to the four channels of control for the H31 quadrotor, as seen in Figure 28. 

From Figure 29, it can be seen that the actual antenna for the remote controller was found 
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printed onto the board.   Additionally, we noticed that a pad was made on the same path 

of the printed antenna to allow the possibility for the user to install an external antenna to 

increase the range and quality of the transmission.   

 

Figure 27.  JJRC H31 Remote Controller. Source: [20]. 

 

Figure 28.  Front of the Printed Circuit Board of the H31 Remote Controller 
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Figure 29.  Back of the Printed Circuit Board of the H31 Remote Controller 

a. Digital Potentiometer Circuit 

Having recognized the limitations in control resolution of the method used in 

Section A, we proposed a new approach to take over the remote controller. This method 

involved replacing the two dual-axis analog potentiometer joysticks on the printed circuit 

board with a 4-channel digital potentiometer that was controlled by an Arduino Uno 

microcontroller. The digital potentiometer used in this circuit was the AD8403A50 

manufactured by Analog Devices [21], shown in Figure 30. This potentiometer produced 

the same signal as the analog potentiometers on the joysticks but by digital means. It also 

provided a resolution of 156 different steps in each of the four independent control 

channels. This was an improvement over the ten steps we used in the previous design. 

The Arduino Uno was programed so that when it received an array of commands 

from the serial port, it checked them for validation and then set the corresponding 

potentiometer parameters for each of the four channels (throttle, yaw, pitch, and roll) as 

required. The Arduino code for the digital potentiometer is found in Appendix F. 
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Figure 30.  Digital Potentiometer Schematic Diagram 

b. Processing and Leap Motion Sensor 

To obtain the Leap Motion sensor data, we employed the same process as in the 

previous section for the FQ777 drone using a custom Processing language program. We 

began by establishing the exclusion zone of 10ൈ10ൈ10 cm from the origin of the sensor 

reference in the Processing code. The data collected in each of the three axes was 

remapped and then rounded to match with the 156 different possible settings for the 

throttle, roll, and pitch of the digital potentiometer. The information for the yaw channel 

was obtained from the horizontal orientation of the hand, and this value was also 

remapped and rounded for the digital potentiometer setting. 

The next step was to create an algorithm responsible for compiling the values of 

the four channels in one array of 12 valid digits. This array was then sent to the Arduino 

Uno board via the serial port. 
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3. System Testing 

Following the same steps as in the previous section, we first tested each module 

separately and then tested the system as a whole. We began by testing the interface 

between the Arduino Uno and the digital potentiometer. A test program was written to 

transmit a sequence of settings for each of the four command channels of the 

AD8403A50 digital potentiometer. The transmissions were staged 100 ms apart. The 

results of the test led us to conclude that the outputs of the digital potentiometer were 

accurate. Two of the four AD8403A50 outputs were captured on the oscilloscope and are 

displayed in Figure 31.  

 

Figure 31.  Digital Potentiometer Test 

The next step was to test the interface between the PC and the Arduino board. 

This interface was established via USB with the data transmission rate set to 115,200 bits 

per second. The test performed consisted of repeatedly sending predefined arrays of 12 

numbers from the computer to the Arduino board via the serial port and then to verify if 

they were received and parsed correctly and in the same order. Data overflow in the serial 

port buffer was avoided by introducing a delay of 70.0 ms between each transmission of 
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the number arrays. The accuracy of the transmitted data was subsequently verified by 

examining the received serial port data. 

The last step of the system testing was to check the performance of the connected 

system with the human operator. We verified that we were able to operate the H31 

quadrotor in a similar manner to the FQ777 helicopter. The flight time was approximately 

six minutes. During this period, we piloted the drone using the Leap Motion sensor. Since 

we had greater resolution for the control signals with this design, we observed that we 

were able to make more precise maneuvers with this drone. 

C. CLOSED-LOOP SYSTEM USING WEBCAM AND LEAP MOTION 
SENSOR 

1. Introduction 

The main objective of this part of the thesis project was to add a control feedback 

loop to the architecture of the system depicted in Figure 25. This was needed to achieve 

more accurate control of position and orientation. The proposed feedback control loop 

consisted of one webcam that was used to track the position of the quadrotor within the 

space in 2D. Image processing was used to establish the position of the drone; the control 

loop was utilized to adjust throttle and roll accordingly. The proposed system architecture 

is shown in Figure 32. 

2. Implementation 

To perform the required modifications to the system, we needed to develop a 

Processing language program to capture and process webcam video that located and 

tracked the position of the drone within the field-of-view of the camera. Since the 

Processing software is oriented mainly to image and video applications, the task of 

capturing video from the webcam was easily implemented.  

Next, we needed to utilize an image processing algorithm that provided the ability 

to detect and track the position of the drone. For this matter, two different options were 

explored using algorithms develop by Shiffman in [10]: 

1. Movement-based tracking algorithm, and 
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2. Color-based tracking algorithm. 

The operating principle of the first algorithm, based on motion, basically 

examines each of the pixels present in an image frame and compares them with those of 

the previous image frame. The output value of this algorithm is the mean distance (center 

of gravity), expressed in (x,y) coordinates, of all the pixels that change in one iteration. 

 

Figure 32.  Architecture of the System to Control the JJRC H31 Modified with 
an Inner Control Loop 

The FQ777 helicopter was used to test the tracking algorithm based on motion. 

We observed that when the helicopter was flying several feet away from the camera, the 

image of the helicopter was relatively small and the algorithm was able to track it 

accurately. When the helicopter was closer to the camera, the tracked object within the 

image increased in size, and the output position of the center of gravity was not stable. 

Another downside observed during the tests was that if there was a second object moving 

in the background, the output position of the center of gravity was shifted by some 

amount towards the direction of the second moving object. A sequence of three image 

frames showing the operation of the tracking algorithm based on movement is found in 
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Figure 33. A solid green square marks the center of gravity of the FQ777 helicopter while 

flying. 

 

Figure 33.  Test of the Tracking Algorithm Based on Movement 

The second tracking algorithm, which was based on color, started by analyzing 

the image frame in search for a specific color region. When it was found, a black circular 

marker was placed at that location. The algorithm subsequently determined if the color 

region had changed position and then updated the location of the track.  

The H31 quadrotor was used to test the tracking algorithm based on color. The 

results obtained in the tests of this algorithm were in general much better than those 

obtained with the movement-tracking algorithm in terms of stability. Background moving 

objects did not affect the performance of the algorithm provided that they had a different 

color than the one that was being tracked. From the series of images depicted in Figure 

34, we observe the operation of the tracking algorithm based on color. The black circle 

tracks the position of an orange ball placed on top of the H31 quadrotor. The Processing 

code for the color-based tracking algorithm is found in Appendix G. 

The output of the position tracking algorithm was the (x,y) coordinates of the 

object located within the image, with the  x-coordinate in the horizontal direction and the  

y-coordinate in the vertical direction. The origin of the image coordinates was set by 

default in the upper left corner of the image, and every position (x,y) represented a single 

pixel within the image frame. 
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Figure 34.  Test of the Algorithm Based on Color 

The next step of the experiment was to develop a Processing language program to 

implement the proposed closed-loop control system. A program was written to track and 

regulate the 2D position of the drone using one webcam. The computer program 

controlled the throttle and roll axes of the drone. To accomplish this task, two 

independent PID controllers (one for each axis) were employed to minimize the error 

distance between the actual position of the drone and the desired position. The Processing 

code for drone control using one webcam is found in Appendix H. 

The logic behind the Processing language code started when the auto-track 

function was activated. This initiated the color-tracking algorithm of the drone. When the 

desired position was entered into the program, the Processing program computed the 

appropriate throttle and roll commands to minimize the error distance. For this program 

to work accurately, the drone had to be set to headless mode. When the headless mode 

was activated on the drone, the onboard flight microcontroller lined up the drone 

movements to be relative to the remote controller position. A flow chart of the program 

was developed to operate the H31 drone autonomously with video feed from one webcam 

and is shown in Figure 35. 
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Figure 35.  Flow Chart of the Processing Program to  
Control the H31 with One Webcam 

3. System Testing 

In order to test the system design shown in Figure 32, we first examined the y-axis 

PID controller, which serves to minimize the vertical error distance. The output of this 

controller was the throttle command for the H31 drone. 

The next step was to test the x-axis, which minimizes the horizontal error 

distance. For this axis, the corresponding PID controller generated the required roll 

command.   

We included some modifications in the original code in order to be able to change 

in real time the gains of the PID controller. These modifications allowed us to see the 
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response of the drone to the different values of proportional, integral, and derivative gains 

while the drone was flying. 

During the tests of the system, adjustment of the PID controller gains was very 

challenging. For this reason, we decided to adopt a heuristic method for tuning PID 

controllers developed by Ziegler and Nichols [22]. This method required that the integral 

and derivative gains initially be set to zero, and then we gradually increased the 

proportional gain until the output of the control loop exhibited a stable oscillation with a 

period equal to Tu. The last value of the proportional gain is defined as the ultimate gain 

Ku. The PID gain parameters Kp, Ti, and Td are obtained from Table 6. 

Table 6.   Ziegler–Nichols Method. Source: [23]. 

 Kp Ti (s) Td (s) 

P 0.50Ku --- --- 

PI 0.45Ku Tu / 1.2 --- 

PID 0.60Ku Tu / 2.0 Tu / 8.0 

 

The output command ( )u t needed to control the distance error ( )e t  was obtained 

using 

        
0

1 t

p d
i

de t
u t K e t e d T

T dt
 

  
       


.

 (1) 

 

A series of images showing the operation of the control loop are shown in Figure 

36. The red “+” sign marks the center of the image, and the red solid square indicates the 

desired position to which the drone should move. The green square is the result of the 

color-tracking algorithm following an orange ball placed on top of the drone. In the 

sequence of pictures, we observe that the system is trying to decrease both vertical and 

horizontal distance error. 
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Figure 36.  PID Gains Test in X and Y Axes 

Having adjusted the PID gains to a nominal set of values using the Ziegler–

Nichols method, we still observed oscillations in the drone position for both control 

channels (throttle and roll). This led us to investigate how fast these corrections were 

being calculated and transmitted by the program developed for this experiment.  

We knew that the Processing main loop was set by default to run at a rate of 60.0 

Hz, but the webcam was only capable of transmitting images at a maximum rate of 30.0 

Hz. This meant that we were limited by the webcam to run the main control loop at half 

of the desired rate. Furthermore, we needed to include an additional delay of 70.0 ms to 

avoid the overflow in the Arduino serial port buffer. This resulted in that the main control 

loop operated at a rate equal to 7.5 Hz. For this reason, we continued to observe the 

oscillations in the drone position; the control loop was not fast enough to precisely 

correct the error distance. 
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IV. CONCLUSIONS 

A. SUMMARY 

The goal of this thesis was to develop an easy-to-use interface to operate a drone. 

More specifically, the main research objective was to design a simple user interface 

incorporating the Leap Motion sensor which would allow the drone operator to control a 

drone using natural hand motions.  

This research demonstrated that it was possible to adequately control and operate 

several examples of commercially-available drones. The motion of the drones was 

coordinated through the Leap Motion sensor via computer programs that were developed 

using the Processing programming language. The research showed that the position and 

orientation of a drone could be controlled in a manner that was natural and intuitive for 

the operator using this sensor.  

The first demonstration of the Leap Motion sensor to operate a drone used the IR 

FQ777 helicopter. To accomplish this, the IR commands from the remote controller were 

captured and synthetized using an IR signal capture circuit. A matrix of 50 different 

commands was created and saved into an Arduino Mega board. A circuit dedicated to 

transmit IR commands was built and connected to the Arduino Mega microcontroller. A 

Processing language program was written to serve as a bridge between the Leap Motion 

sensor and the Arduino based IR signal emitter. 

To demonstrate the control of a more advanced drone, the RF JJRC H31 

quadrotor, a different method was explored. A digital potentiometer controlled by an 

Arduino Uno microcontroller was connected directly into the remote controller. This 

method increased the resolution to 156 different settings in each of the four control 

channels (throttle, yaw, pitch, and roll). The Processing language computer program was 

modified to handle one additional channel (roll) as well as the addition of an algorithm in 

charge of compiling the values of the four channels into one array and send it to the 

Arduino Uno microcontroller via the serial port. 
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A closed-loop system consisting of one webcam was created to track and control 

the position and orientation of the JJRC H31 quadrotor. The tracking algorithm used was 

based on color. The position obtained from this algorithm was utilized to drive the drone 

to a desired position. To accomplish this function, two independent PID controllers (one 

for the vertical axis and one for the horizontal axis) were applied to minimize the error 

distance between the actual position of the drone and the desired position.   

The complete user interface was successfully tested and demonstrated with both 

the infrared-controlled and the radio frequency-controlled drones utilized in this research. 

We observed that the user interface made the control of the drones easier and more 

intuitive because it exploited the natural movements and reactions of the operator’s hand. 

B. FUTURE RESEARCH 

The connection between the desktop computer and the Arduino microcontroller 

needs to be improved. During the tests performed in this research, we observed an 

overflow in the serial port buffer that forced us to introduce a delay of 70.0 ms to 

overcome this problem. A communication channel based on Bluetooth or Wi-Fi can be 

explored to increase the communication data rate. 

Additional investigation into the position tracking capability of the system is also 

necessary. We proved that the control rate using a webcam connected to the computer 

running a Processing program was not fast enough to maintain stability of a flying drone. 

The use of other tracking system like the Prime 17W motion capture system from 

OptiTrack [24], recently installed in the Controls System Laboratory, provides frame 

rates up to 360 Hz. 

We can take advantage of the dynamics of the hand motion to program the 

response of the system based on hands’ position in space, orientation, and even 

predefined gestures. In this research work, we proved that it was possible to achieve 

control of a drone using different positions of the hand with respect of the Cartesian 

coordinate origin of the Leap Motion sensor, as seen in Figure 37. In [7], the author 

explored different approaches of controlling a drone based on the orientation of the hand, 

as seen in Figure 38, and also based on gestures. 
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The use of predefined gestures opens up a new category of options in the control 

of drones. Through gestures we can easily execute a large variety of maneuvers, such as 

landing, takeoff, backflip maneuvers, barrel rolls, bank turns, brake turns, automatic 

return to base, etc. We can even activate or deactivate sensors on board, execute 

predefined flying paths, launch missiles, or deploy counter measures. 

 

 

Figure 37.  Commands with Respect to the Position of the Hand 

 

Figure 38.  Commands with Respect to the Orientation  
of the Hand. Source: [7]. 
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Throughout our research, the control of both drones was developed with the use 

of a single hand, but the sensor features the capability to detect two hands at the same 

time. This enables the possibility of using a system with a single operator that can apply 

the movement of his two hands to control two drones at the same time or one drone and 

some additional on board arrangement (manipulators, sensors, weapons, etc.). Control 

using two hands can even be used to operate different groups of drones flying in swarms. 
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APPENDIX A.  MATRIX OF IR COMMANDS FOR THE FQ777 

 
THROTTLE RIGHT LEFT FWD BACK 

1 Q A Z e o 

2 W S X f p 

3 E D C g q 

4 R F V h r 

5 T G B i s 

6 Y H N j t 

7 U J M k u 

8 I K b l v 

9 O L c m w 

10 P a d n x 

 
 

Q 
800 750 750 800 700 850 300 500 650 500 300 450 650 550 250 500 300 500 250 500 300 500 650 
500 300 500 650 500 300 850 300 500 250 900 650 500 650 900 250 

A 
750 800 700 800 700 850 300 850 300 500 650 500 650 550 250 500 300 450 300 500 650 500 700 
500 250 500 650 500 300 850 300 500 300 500 250 500 300 850 650 

Z 
750 800 700 850 650 900 250 500 300 500 250 500 300 500 300 450 300 500 300 450 300 500 650 
500 300 500 650 500 300 850 300 500 250 900 300 450 700 850 650  

e 
750 800 700 850 650 850 300 500 650 500 300 500 650 500 300 450 300 500 300 450 300 900 250 
500 700 850 250 500 300 850 300 500 300 500 250 500 300 500 650  

o 
800 750 750 800 700 850 300 500 650 500 250 500 700 500 250 500 300 500 250 500 300 500 300 
450 300 500 300 450 300 850 300 500 300 850 300 500 650 850 700 

 

W 
750 750 750 800 700 850 300 500 650 500 300 450 700 500 300 450 700 450 700 850 300 500 650 
500 300 450 700 500 250 900 250 500 300 850 300 500 300 450 300 

S 
750 800 750 800 700 850 300 850 300 450 700 450 700 500 300 450 700 450 700 850 300 500 650 
500 300 450 700 500 300 850 300 450 300 500 650 500 700 450 300  

X 
750 750 750 800 700 850 300 500 250 500 300 500 250 500 300 500 650 500 650 900 250 500 700 
450 300 500 650 500 300 850 300 500 300 850 650 500 300 500 650  

f 
750 800 700 800 700 850 300 500 650 500 300 500 650 500 300 450 700 500 650 850 300 850 300 
500 650 850 300 500 300 850 300 500 250 500 700 500 650 850 650 
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p 
750 800 750 800 700 850 250 500 700 500 250 500 700 450 300 500 650 500 650 900 250 500 300 
500 300 450 300 500 300 850 300 500 250 900 650 500 300 450 700 

 

E 
750 800 700 800 700 850 300 500 650 500 300 450 700 500 250 500 700 850 650 900 250 500 700 
450 300 500 650 500 300 850 300 500 300 850 300 850 300 450 300 

D 
800 750 750 800 700 850 300 850 300 500 650 500 650 500 300 500 650 850 700 850 300 500 650 
500 250 500 700 500 250 900 250 500 300 500 650 850 700 500 250 

C 
750 800 700 850 650 850 300 500 300 500 250 500 300 500 300 450 700 850 650 850 300 500 700 
450 300 500 650 500 300 850 300 500 250 900 650 850 300 500 650 

g 
750 800 700 850 650 900 250 500 700 450 300 500 650 500 300 500 650 850 700 850 300 850 300 
500 650 850 300 500 300 850 300 450 300 500 650 900 650 850 700 

q 
800 750 750 800 700 850 300 500 650 500 300 450 700 500 250 500 650 900 650 850 300 500 300 
500 250 500 300 500 300 850 300 450 300 850 700 850 300 450 700 

 

R 
800 750 750 800 700 850 300 500 650 500 300 450 700 500 250 900 250 900 650 500 650 500 700 
450 300 500 650 500 300 850 300 450 300 500 700 850 300 850 650 

F 
750 800 700 850 700 850 300 850 300 450 700 500 650 500 300 850 300 850 650 500 650 500 700 
450 300 500 650 500 300 850 300 500 300 850 300 850 650 850 700  

V 
750 800 700 850 650 850 300 500 300 500 250 500 300 500 300 850 300 850 650 500 250 500 700 
500 250 500 700 450 300 850 300 500 300 500 250 900 250 850 700 

h 
750 800 700 850 700 800 300 500 700 450 300 500 650 500 300 850 300 850 700 450 300 900 250 
500 650 900 250 500 300 850 300 500 300 850 300 850 650 500 650 

r 
800 750 750 800 700 850 300 500 650 500 300 450 700 500 250 900 250 900 650 500 250 500 300 
500 300 450 300 500 300 850 300 500 250 500 300 850 300 850 700  

 

T 
750 800 700 800 700 850 300 500 650 500 300 500 650 500 250 900 650 850 300 850 700 500 650 
500 300 450 700 500 250 900 250 500 300 500 300 850 650 500 650  

G 
750 800 750 800 700 800 350 850 300 450 700 450 700 500 250 900 650 850 300 850 700 500 250 
850 700 850 650 500 300 850 300 500 300 850 300 450 700 850 650  

B 
750 800 700 850 650 850 300 500 300 500 250 500 300 500 300 850 650 850 300 850 700 500 650 
500 300 450 700 500 250 900 250 500 300 500 650 850 700 500 250  

i 
750 800 700 850 650 850 300 500 650 500 300 500 650 500 300 850 650 900 250 850 700 850 300 
500 650 850 300 500 300 850 300 500 250 900 650 850 300 850 300 

s 
800 750 750 800 700 850 300 500 650 500 300 450 700 500 250 900 650 850 300 850 300 500 300 
450 300 500 300 500 250 900 250 500 300 500 650 850 700 500 650 

 

Y 
750 800 700 800 700 850 300 500 650 500 300 450 700 500 650 500 300 450 700 850 300 500 650 
500 250 500 700 500 250 900 250 500 300 850 700 450 300 500 300 

H 
800 750 750 800 700 850 300 850 300 500 650 500 650 500 650 500 300 500 650 500 650 500 650 
500 300 500 650 500 300 850 300 450 300 500 300 500 650 850 700 

N 
750 750 750 800 700 850 300 500 250 500 300 500 250 500 700 450 300 500 650 500 650 500 700 
500 250 500 650 500 300 850 300 500 300 850 300 450 300 850 300 

j 
750 800 700 850 650 900 250 500 700 450 300 500 650 500 700 450 300 500 650 500 650 900 300 
450 700 850 300 500 250 900 250 500 300 500 300 450 700 450 300 

t 
750 800 700 850 650 900 250 500 700 450 300 500 650 500 700 450 300 500 650 500 650 500 300 
500 300 450 300 500 300 850 300 450 300 900 250 500 300 850 300 
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U 
750 800 700 850 650 850 300 500 650 500 300 500 650 500 650 500 650 500 300 850 700 450 700 
500 250 500 650 500 300 850 300 500 300 850 300 450 700 500 650 

J 
750 800 750 800 650 900 250 900 300 450 700 450 700 500 650 500 650 500 300 850 650 500 300 
850 700 850 650 500 300 850 300 500 250 500 300 850 700 850 650 

M 
750 750 750 800 700 850 300 500 300 450 300 500 300 450 700 500 650 500 300 850 300 450 700 
500 250 500 650 500 300 850 300 500 250 900 650 500 650 500 700 

k 
800 750 750 800 650 900 250 550 650 500 250 500 650 550 650 500 650 500 300 850 300 850 300 
450 700 850 300 500 250 900 250 500 300 500 650 500 300 850 650 

u 
750 800 700 850 650 900 250 500 650 550 250 500 650 500 700 450 700 500 250 500 300 500 250 
500 300 500 250 550 250 850 300 500 300 850 650 500 700 850 650 

 

I 
750 800 700 850 650 850 300 500 700 450 300 500 650 500 700 450 700 850 300 450 700 500 650 
500 300 450 700 500 250 900 250 500 300 850 300 850 700 850 650 

K 
800 750 750 800 650 900 250 900 300 500 650 500 650 500 650 500 700 850 250 500 700 500 650 
500 300 450 700 500 250 850 300 500 300 500 650 850 300 850 700 

b 
750 800 750 750 750 800 300 500 300 450 300 500 300 500 650 500 650 850 300 500 650 500 650 
500 300 500 650 500 300 850 300 450 300 900 650 850 700 850 300 

l 
750 800 750 750 750 800 350 450 700 450 300 500 650 500 700 450 700 850 300 450 700 850 300 
500 650 850 300 500 300 850 300 450 300 500 700 850 250 500 300  

v 
750 750 750 800 700 850 300 500 650 500 300 450 700 500 650 500 650 850 300 500 650 500 300 
500 250 500 300 500 300 850 300 450 300 850 700 850 700 850 250 

 

O 
750 800 700 850 700 850 250 500 700 500 250 500 700 450 700 850 300 850 650 500 650 550 650 
500 250 500 650 550 250 850 300 500 300 500 650 850 300 850 650 

L 
750 800 700 850 650 900 250 900 250 500 700 450 700 500 650 850 300 850 700 450 300 500 650 
500 300 500 650 500 300 850 300 450 300 900 250 900 650 850 300 

c 
750 800 700 850 650 850 300 500 300 500 250 500 300 500 650 850 300 850 700 450 300 500 700 
450 300 500 650 500 300 850 300 450 300 500 300 850 300 850 650 

m 
750 800 700 850 650 900 250 500 700 450 300 500 650 500 700 850 250 900 650 500 300 850 300 
500 650 850 300 500 250 900 300 450 300 850 300 850 700 450 700 

w 
750 750 750 800 700 850 300 500 650 500 300 450 700 500 650 850 300 850 700 450 300 500 300 
500 250 500 300 500 300 850 300 450 300 500 300 850 300 850 650 

 

P 
800 750 750 800 700 850 300 500 650 500 300 450 700 850 300 500 250 500 650 500 650 550 650 
500 250 500 700 500 250 850 300 500 300 850 650 500 300 850 650 

a 
750 800 700 850 650 900 250 900 300 450 700 450 700 850 300 500 250 500 700 450 700 500 650 
500 300 450 700 500 250 900 250 500 300 500 300 450 700 850 650  

d 
800 750 750 800 700 850 300 500 250 500 300 450 300 900 300 450 300 500 650 500 650 500 650 
500 300 500 650 500 300 850 300 500 250 900 300 450 300 850 300 

n 
750 800 700 800 700 850 300 500 650 500 300 500 650 850 300 500 300 450 700 450 700 850 300 
500 650 850 300 500 300 850 300 450 300 500 300 500 650 500 250 

x 
750 800 750 800 700 850 300 500 650 500 300 450 700 850 300 500 250 500 650 500 700 500 250 
500 300 450 300 500 300 850 300 500 250 900 300 450 300 850 300 

 

 

 



 52

THIS PAGE INTENTIONALLY LEFT BLANK 



 53

APPENDIX B.  ARDUINO CODE FOR IR EMITTER 

#include <IRremote.h> 
 
int IRLED = 9; //in UNO is pin 3, in MEGA is pin 9 
decode_results results; 
IRsend irsend; 
 
unsigned int letters[51][39] =  
{ 

{750, 800, 700, 800, 700, 850, 300, 850, 300, 500, 650, 500, 650, 550, 250, 500, 
300, 450, 300, 500, 650, 500, 700, 500, 250, 500, 650, 500, 300, 850, 300, 500, 
300, 500, 250, 500, 300, 850, 650}, 
{750, 800, 700, 850, 650, 850, 300, 500, 300, 500, 250, 500, 300, 500, 300, 850, 
650, 850, 300, 850, 700, 500, 650, 500, 300, 450, 700, 500, 250, 900, 250, 500, 
300, 500, 650, 850, 700, 500, 250}, 
{750, 800, 700, 850, 650, 850, 300, 500, 300, 500, 250, 500, 300, 500, 300, 450, 
700, 850, 650, 850, 300, 500, 700, 450, 300, 500, 650, 500, 300, 850, 300, 500, 
250, 900, 650, 850, 300, 500, 650}, 
{800, 750, 750, 800, 700, 850, 300, 850, 300, 500, 650, 500, 650, 500, 300, 500, 
650, 850, 700, 850, 300, 500, 650, 500, 250, 500, 700, 500, 250, 900, 250, 500, 
300, 500, 650, 850, 700, 500, 250}, 
{750, 800, 700, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 250, 500, 
700, 850, 650, 900, 250, 500, 700, 450, 300, 500, 650, 500, 300, 850, 300, 500, 
300, 850, 300, 850, 300, 450, 300}, 
{750, 800, 700, 850, 700, 850, 300, 850, 300, 450, 700, 500, 650, 500, 300, 850, 
300, 850, 650, 500, 650, 500, 700, 450, 300, 500, 650, 500, 300, 850, 300, 500, 
300, 850, 300, 850, 650, 850, 700}, 
{750, 800, 750, 800, 700, 800, 350, 850, 300, 450, 700, 450, 700, 500, 250, 900, 
650, 850, 300, 850, 700, 500, 250, 850, 700, 850, 650, 500, 300, 850, 300, 500, 
300, 850, 300, 450, 700, 850, 650}, 
{800, 750, 750, 800, 700, 850, 300, 850, 300, 500, 650, 500, 650, 500, 650, 500, 
300, 500, 650, 500, 650, 500, 650, 500, 300, 500, 650, 500, 300, 850, 300, 450, 
300, 500, 300, 500, 650, 850, 700}, 
{750, 800, 700, 850, 650, 850, 300, 500, 700, 450, 300, 500, 650, 500, 700, 450, 
700, 850, 300, 450, 700, 500, 650, 500, 300, 450, 700, 500, 250, 900, 250, 500, 
300, 850, 300, 850, 700, 850, 650}, 
{750, 800, 750, 800, 650, 900, 250, 900, 300, 450, 700, 450, 700, 500, 650, 500, 
650, 500, 300, 850, 650, 500, 300, 850, 700, 850, 650, 500, 300, 850, 300, 500, 
250, 500, 300, 850, 700, 850, 650}, 
{800, 750, 750, 800, 650, 900, 250, 900, 300, 500, 650, 500, 650, 500, 650, 500, 
700, 850, 250, 500, 700, 500, 650, 500, 300, 450, 700, 500, 250, 850, 300, 500, 
300, 500, 650, 850, 300, 850, 700}, 
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{750, 800, 700, 850, 650, 900, 250, 900, 250, 500, 700, 450, 700, 500, 650, 850, 
300, 850, 700, 450, 300, 500, 650, 500, 300, 500, 650, 500, 300, 850, 300, 450, 
300, 900, 250, 900, 650, 850, 300}, 
{750, 750, 750, 800, 700, 850, 300, 500, 300, 450, 300, 500, 300, 450, 700, 500, 
650, 500, 300, 850, 300, 450, 700, 500, 250, 500, 650, 500, 300, 850, 300, 500, 
250, 900, 650, 500, 650, 500, 700}, 
{750, 750, 750, 800, 700, 850, 300, 500, 250, 500, 300, 500, 250, 500, 700, 450, 
300, 500, 650, 500, 650, 500, 700, 500, 250, 500, 650, 500, 300, 850, 300, 500, 
300, 850, 300, 450, 300, 850, 300}, 
{750, 800, 700, 850, 700, 850, 250, 500, 700, 500, 250, 500, 700, 450, 700, 850, 
300, 850, 650, 500, 650, 550, 650, 500, 250, 500, 650, 550, 250, 850, 300, 500, 
300, 500, 650, 850, 300, 850, 650}, 
{800, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 850, 300, 500, 
250, 500, 650, 500, 650, 550, 650, 500, 250, 500, 700, 500, 250, 850, 300, 500, 
300, 850, 650, 500, 300, 850, 650}, 
{800, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 650, 550, 250, 500, 
300, 500, 250, 500, 300, 500, 650, 500, 300, 500, 650, 500, 300, 850, 300, 500, 
250, 900, 650, 500, 650, 900, 250}, 
{800, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 250, 900, 
250, 900, 650, 500, 650, 500, 700, 450, 300, 500, 650, 500, 300, 850, 300, 450, 
300, 500, 700, 850, 300, 850, 650}, 
{750, 800, 750, 800, 700, 850, 300, 850, 300, 450, 700, 450, 700, 500, 300, 450, 
700, 450, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 300, 850, 300, 450, 
300, 500, 650, 500, 700, 450, 300}, 
{750, 800, 700, 800, 700, 850, 300, 500, 650, 500, 300, 500, 650, 500, 250, 900, 
650, 850, 300, 850, 700, 500, 650, 500, 300, 450, 700, 500, 250, 900, 250, 500, 
300, 500, 300, 850, 650, 500, 650}, 
{750, 800, 700, 850, 650, 850, 300, 500, 650, 500, 300, 500, 650, 500, 650, 500, 
650, 500, 300, 850, 700, 450, 700, 500, 250, 500, 650, 500, 300, 850, 300, 500, 
300, 850, 300, 450, 700, 500, 650}, 
{750, 800, 700, 850, 650, 850, 300, 500, 300, 500, 250, 500, 300, 500, 300, 850, 
300, 850, 650, 500, 250, 500, 700, 500, 250, 500, 700, 450, 300, 850, 300, 500, 
300, 500, 250, 900, 250, 850, 700}, 
{750, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 300, 450, 
700, 450, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 250, 900, 250, 500, 
300, 850, 300, 500, 300, 450, 300}, 
{750, 750, 750, 800, 700, 850, 300, 500, 250, 500, 300, 500, 250, 500, 300, 500, 
650, 500, 650, 900, 250, 500, 700, 450, 300, 500, 650, 500, 300, 850, 300, 500, 
300, 850, 650, 500, 300, 500, 650}, 
{750, 800, 700, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 650, 500, 
300, 450, 700, 850, 300, 500, 650, 500, 250, 500, 700, 500, 250, 900, 250, 500, 
300, 850, 700, 450, 300, 500, 300}, 
{750, 800, 700, 850, 650, 900, 250, 500, 300, 500, 250, 500, 300, 500, 300, 450, 
300, 500, 300, 450, 300, 500, 650, 500, 300, 500, 650, 500, 300, 850, 300, 500, 
250, 900, 300, 450, 700, 850, 650}, 
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{750, 800, 700, 850, 650, 900, 250, 900, 300, 450, 700, 450, 700, 850, 300, 500, 
250, 500, 700, 450, 700, 500, 650, 500, 300, 450, 700, 500, 250, 900, 250, 500, 
300, 500, 300, 450, 700, 850, 650}, 
{750, 800, 750, 750, 750, 800, 300, 500, 300, 450, 300, 500, 300, 500, 650, 500, 
650, 850, 300, 500, 650, 500, 650, 500, 300, 500, 650, 500, 300, 850, 300, 450, 
300, 900, 650, 850, 700, 850, 300}, 
{750, 800, 700, 850, 650, 850, 300, 500, 300, 500, 250, 500, 300, 500, 650, 850, 
300, 850, 700, 450, 300, 500, 700, 450, 300, 500, 650, 500, 300, 850, 300, 450, 
300, 500, 300, 850, 300, 850, 650}, 
{800, 750, 750, 800, 700, 850, 300, 500, 250, 500, 300, 450, 300, 900, 300, 450, 
300, 500, 650, 500, 650, 500, 650, 500, 300, 500, 650, 500, 300, 850, 300, 500, 
250, 900, 300, 450, 300, 850, 300}, 
{750, 800, 700, 850, 650, 850, 300, 500, 650, 500, 300, 500, 650, 500, 300, 450, 
300, 500, 300, 450, 300, 900, 250, 500, 700, 850, 250, 500, 300, 850, 300, 500, 
300, 500, 250, 500, 300, 500, 650}, 
{750, 800, 700, 800, 700, 850, 300, 500, 650, 500, 300, 500, 650, 500, 300, 450, 
700, 500, 650, 850, 300, 850, 300, 500, 650, 850, 300, 500, 300, 850, 300, 500, 
250, 500, 700, 500, 650, 850, 650}, 
{750, 800, 700, 850, 650, 900, 250, 500, 700, 450, 300, 500, 650, 500, 300, 500, 
650, 850, 700, 850, 300, 850, 300, 500, 650, 850, 300, 500, 300, 850, 300, 450, 
300, 500, 650, 900, 650, 850, 700}, 
{750, 800, 700, 850, 700, 800, 300, 500, 700, 450, 300, 500, 650, 500, 300, 850, 
300, 850, 700, 450, 300, 900, 250, 500, 650, 900, 250, 500, 300, 850, 300, 500, 
300, 850, 300, 850, 650, 500, 650}, 
{750, 800, 700, 850, 650, 850, 300, 500, 650, 500, 300, 500, 650, 500, 300, 850, 
650, 900, 250, 850, 700, 850, 300, 500, 650, 850, 300, 500, 300, 850, 300, 500, 
250, 900, 650, 850, 300, 850, 300}, 
{750, 800, 700, 850, 650, 900, 250, 500, 700, 450, 300, 500, 650, 500, 700, 450, 
300, 500, 650, 500, 650, 900, 300, 450, 700, 850, 300, 500, 250, 900, 250, 500, 
300, 500, 300, 450, 700, 450, 300}, 
{800, 750, 750, 800, 650, 900, 250, 550, 650, 500, 250, 500, 650, 550, 650, 500, 
650, 500, 300, 850, 300, 850, 300, 450, 700, 850, 300, 500, 250, 900, 250, 500, 
300, 500, 650, 500, 300, 850, 650}, 
{750, 800, 750, 750, 750, 800, 350, 450, 700, 450, 300, 500, 650, 500, 700, 450, 
700, 850, 300, 450, 700, 850, 300, 500, 650, 850, 300, 500, 300, 850, 300, 450, 
300, 500, 700, 850, 250, 500, 300}, 
{750, 800, 700, 850, 650, 900, 250, 500, 700, 450, 300, 500, 650, 500, 700, 850, 
250, 900, 650, 500, 300, 850, 300, 500, 650, 850, 300, 500, 250, 900, 300, 450, 
300, 850, 300, 850, 700, 450, 700}, 
{750, 800, 700, 800, 700, 850, 300, 500, 650, 500, 300, 500, 650, 850, 300, 500, 
300, 450, 700, 450, 700, 850, 300, 500, 650, 850, 300, 500, 300, 850, 300, 450, 
300, 500, 300, 500, 650, 500, 250}, 
{800, 750, 750, 800, 700, 850, 300, 500, 650, 500, 250, 500, 700, 500, 250, 500, 
300, 500, 250, 500, 300, 500, 300, 450, 300, 500, 300, 450, 300, 850, 300, 500, 
300, 850, 300, 500, 650, 850, 700}, 
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{750, 800, 750, 800, 700, 850, 250, 500, 700, 500, 250, 500, 700, 450, 300, 500, 
650, 500, 650, 900, 250, 500, 300, 500, 300, 450, 300, 500, 300, 850, 300, 500, 
250, 900, 650, 500, 300, 450, 700}, 
{800, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 250, 500, 
650, 900, 650, 850, 300, 500, 300, 500, 250, 500, 300, 500, 300, 850, 300, 450, 
300, 850, 700, 850, 300, 450, 700}, 
{800, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 250, 900, 
250, 900, 650, 500, 250, 500, 300, 500, 300, 450, 300, 500, 300, 850, 300, 500, 
250, 500, 300, 850, 300, 850, 700}, 
{800, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 250, 900, 
650, 850, 300, 850, 300, 500, 300, 450, 300, 500, 300, 500, 250, 900, 250, 500, 
300, 500, 650, 850, 700, 500, 650}, 
{750, 800, 700, 850, 650, 900, 250, 500, 700, 450, 300, 500, 650, 500, 700, 450, 
300, 500, 650, 500, 650, 500, 300, 500, 300, 450, 300, 500, 300, 850, 300, 450, 
300, 900, 250, 500, 300, 850, 300}, 
{750, 800, 700, 850, 650, 900, 250, 500, 650, 550, 250, 500, 650, 500, 700, 450, 
700, 500, 250, 500, 300, 500, 250, 500, 300, 500, 250, 550, 250, 850, 300, 500, 
300, 850, 650, 500, 700, 850, 650}, 
{750, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 650, 500, 
650, 850, 300, 500, 650, 500, 300, 500, 250, 500, 300, 500, 300, 850, 300, 450, 
300, 850, 700, 850, 700, 850, 250}, 
{750, 750, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 500, 650, 850, 
300, 850, 700, 450, 300, 500, 300, 500, 250, 500, 300, 500, 300, 850, 300, 450, 
300, 500, 300, 850, 300, 850, 650}, 
{750, 800, 750, 800, 700, 850, 300, 500, 650, 500, 300, 450, 700, 850, 300, 500, 
250, 500, 650, 500, 700, 500, 250, 500, 300, 450, 300, 500, 300, 850, 300, 500, 
250, 900, 300, 450, 300, 850, 300} 

}; 
 
void setup() 
{ 

Serial.begin(115200); 
pinMode(IRLED, OUTPUT); 

} 
 
void slow_down() 
{ 
 irsend.sendRaw(letters[20],78,38); //U 
 irsend.sendRaw(letters[22],78,38); //Y 
 irsend.sendRaw(letters[19],78,38); //T 
 irsend.sendRaw(letters[17],78,38); //R 
 irsend.sendRaw(letters[4],78,38);   //E 
 irsend.sendRaw(letters[22],78,38); //W 
} 
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void loop() 
{ 
 if (Serial.available() > 0) 
 { 
  char letter_to_send = Serial.read(); 
  if (letter_to_send == ‘#’){ 
   slow_down(); 

}   
if (isLowerCase(letter_to_send)) 
{ 

char letters_index = letter_to_send - ‘a’ + 26;      
irsend.sendRaw(letters[letters_index],sizeof(letters[letters_index]),
38); 

   delay(50); 
} 
else{ 

char letters_index = letter_to_send - ‘A’;       
irsend.sendRaw(letters[letters_index],sizeof(letters[letters_index]),
38); 

   delay(50); 
}  

} 
} 
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APPENDIX C.  PROCESSING CODE FOR LEAP MOTION TEST  

import de.voidplus.leapmotion.*; 
 
LeapMotion leap; 
 
float x, y, z; 
 
void setup()  
{ 
   background(255); 
   leap = new LeapMotion(this); 
} 
 
void draw()  
{ 
   background(255); 
   for (Hand hand : leap.getHands ())  

{ 
     PVector handPosition   = hand.getPosition(); 
 
     x = handPosition.x; 
     
     y = handPosition.y; 
 
     z = handPosition.z; 
 
     print (“X:  “ + x + “\t” + “Y:  “ + y + “\t” + “Z:  “ + z + “\n”); 

   } 
} 
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APPENDIX D.  PROCESSING CODE FOR LEAP MOTION 
DATA COLLECTION 

import de.voidplus.leapmotion.*; 
 
LeapMotion leap; 
int x, y, z; 
 
void setup()  
{ 
   background(255); 
   leap = new LeapMotion(this); 
} 
 
void draw()  
{ 
   background(255); 
   for (Hand hand : leap.getHands ())  

{ 
      PVector handPosition   = hand.getPosition(); 
 
     //Right and Left from -10 to +10 
      x =  int(map(handPosition.x, 1, 100, -10, 10)); 
 
      //Up and Down from 1 to 10 
      y  =  int(map(handPosition.y, 80, 55, 1, 10)); 
 
      //Forward and Back from 1 to 10 
      z  =  int(map(handPosition.z, 1, 85, 10, -10)); 
 
  print (“X:  “ + x + “\t” + “Y:  “ + y + “\t” + “Z:  “ + z + “\n”); 
   } 
} 
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APPENDIX E.  PROCESSING CODE FOR LEAP MOTION 
HELO CONTROL 

import de.voidplus.leapmotion.*; 
import processing.serial.*; 
Serial myPort; 
 
LeapMotion leap; 
int xx, yy, zz; 
 
void setup()  
{ 

  background (255); 
  leap = new LeapMotion(this); 
  myPort = new Serial(this, “/dev/tty.usbmodem1421,” 115200); 
  stroke(0); 

} 
 
void draw()  
{ 

   background(255); 
   for (Hand hand : leap.getHands ())  

{ 
     PVector handPosition   = hand.getPosition(); 
 
     //Right and Left from -10 to +10 
    xx= int(map(handPosition.x, 1, 100, -10, 10)); 
 
     //Up and Down from 1 to 10 
     yy = int(map(handPosition.y, 80, 55, 1, 10)); 
 
     //Forward and Back from 1 to 10 
     zz = int(map(handPosition.z, 1, 85, 10, -10)); 
 
     if (leap.countHands()<1)  

{ 
        xx=yy=zz=0; 
     }  
 
 //10 codes for center power ‘Q,W,E,R,T,yy,U,I,O,P’ 
 if (yy==1 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
 myPort.write(81);  
 delay(500); 
 }   
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    if (yy==2 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(87); 
      delay(500); 
    }   
    if (yy==3 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(69); 
      delay(500); 
    }   
    if (yy==4 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(82); 
      delay(500); 
    }   
    if (yy==5 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(84); 
      delay(500); 
    }   
    if (yy==6 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(89); 
      delay(500); 
    }   
    if (yy==7 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(85); 
      delay(500); 
    }   
    if (yy==8 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(73); 
      delay(500); 
    }   
    if (yy==9 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(79); 
      delay(500); 
    }   
    if (yy>=10 && xx<4 && xx>-3 && zz<6 && zz>-5) { 
      myPort.write(80); 
      delay(500); 
 
 
    //10 codes for right ‘A,S,D,F,G,H,J,K,L,a’ 
    }   
    if (yy == 1 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(65); 
      delay(500); 
    }   
    if (yy == 2 && xx >= 4 && zz < 6 && zz >-4) { 



 65

      myPort.write(83); 
      delay(500); 
    }   
    if (yy == 3 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(68); 
      delay(500); 
    }   
    if (yy == 4 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(70); 
      delay(500); 
    }   
    if (yy == 5 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(71); 
      delay(500); 
    }   
    if (yy == 6 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(72); 
      delay(500); 
    }   
    if (yy == 7 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(74); 
      delay(500); 
    }   
    if (yy == 8 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(75); 
      delay(500); 
    }   
    if (yy == 9 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(76); 
      delay(500); 
    }   
    if (yy >= 10 && xx >= 4 && zz < 6 && zz >-4) { 
      myPort.write(97); 
      delay(500); 
 
 
    //10 codes for left ‘zz,xx,C,V,B,N,M,b,c,d’ 
    }   
    if (yy == 1 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(90); 
      delay(500); 
    }   
    if (yy == 2 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(88); 
      delay(500); 
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    }   
    if (yy == 3 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(67); 
      delay(500); 
    }   
    if (yy == 4 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(86); 
      delay(500); 
    }   
    if (yy == 5 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(66); 
      delay(500); 
    }   
    if (yy == 6 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(78); 
      delay(500); 
    }   
    if (yy == 7 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(77); 
      delay(500); 
    }   
    if (yy == 8 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(98); 
      delay(500); 
    }   
    if (yy == 9 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(99); 
      delay(500); 
    }   
    if (yy >= 10 && xx <= -4 && zz < 6 && zz >-4) { 
      myPort.write(100); 
      delay(500); 
 
 
    //10 codes for forward ‘e,f,g,h,i,j,k,l,m,n’ 
    }   
    if (yy == 1 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(101); 
      delay(500); 
    }   
    if (yy == 2 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(102); 
      delay(500); 
    }   
    if (yy == 3 && xx > -4 && xx < 4 && zz <= -5) { 
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      myPort.write(103); 
      delay(500); 
    }   
    if (yy == 4 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(104); 
      delay(500); 
    }   
    if (yy == 5 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(105); 
      delay(500); 
    }   
    if (yy == 6 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(106); 
      delay(500); 
    }   
    if (yy == 7 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(107); 
      delay(500); 
    }   
    if (yy == 8 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(108); 
      delay(500); 
    }   
    if (yy == 9 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(109); 
      delay(500); 
    }   
    if (yy >= 10 && xx > -4 && xx < 4 && zz <= -5) { 
      myPort.write(110); 
      delay(500); 
 
 
    //10 codes for back ‘o,p,q,r,s,t,u,v,w,xx’ 
    }   
    if (yy == 1 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(111); 
      delay(500); 
    }   
    if (yy == 2 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(112); 
      delay(500); 
    }   
    if (yy == 3 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(113); 
      delay(500); 
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    }   
    if (yy == 4 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(114); 
      delay(500); 
    }   
    if (yy == 5 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(115); 
      delay(500); 
    }   
    if (yy == 6 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(116); 
      delay(500); 
    }   
    if (yy == 7 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(117); 
      delay(500); 
    }   
    if (yy == 8 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(118); 
      delay(500); 
    }   
    if (yy == 9 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write(119); 
      delay(500); 
    }   
    if (yy >= 11 && xx > -4 && xx < 4 && zz >=6) { 
      myPort.write (120); 
      delay(500); 
    } 

   } 
  myPort.clear(); 
} 
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APPENDIX F.  ARDUINO CODE FOR DIGITAL POTENTIOMETER 

#include <SPI.h> 
 
const int slaveSelectPin = 10; 
const int shutDownPin = 7; 
int buffer [14]; 
int val; 
 
int Throttle, Roll, Yaw, Pitch; 
 
 
void setup()  
{ 

  pinMode (slaveSelectPin, OUTPUT); 
  pinMode (shutDownPin, OUTPUT); 
  SPI.begin(); 
  digitalWrite(shutDownPin, HIGH); 
  Serial.begin(115200); 
  digitalPotWrite(0, 0); 
  digitalPotWrite(1, 75); 
  digitalPotWrite(2, 77); 
  digitalPotWrite(3, 77); 

} 
 
void loop()  
{ 

 if (Serial.available() > 0)  
{ 

for (int i = 0; i < 14; i++) { 
buffer[i] = Serial.read() - ‘0’; 
delay(3); 

      } 
      if (buffer[0] == -13)  

{ 
        activateDrone(); 
        Serial.println(“Activating Drone”); 

      } 
      if (buffer[0] == -7)  

{ 
       Calibrate(); 
         Serial.println(“Calibrating Sensors”); 
      } 
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if (buffer[0] >= 0 && buffer[0]<=9 && buffer[1] >= 0 && buffer[1] <= 9 
&& 
buffer[2] >= 0 && buffer[2] <= 9 && buffer[3] >= 0 && buffer[3] <= 9 
&& 
buffer[4] >= 0 && buffer[4] <= 9 && buffer[5] >= 0 && buffer[5] <= 9 
&& 
buffer[6] >= 0 && buffer[6] <= 9 && buffer[7] >= 0 && buffer[7] <= 9 
&& 
buffer[8] >= 0 && buffer[8] <= 9 && buffer[9] >= 0 && buffer[9] <= 9 
&& 
buffer[10] >= 0 && buffer[10] <= 9 && buffer[11] >= 0 && buffer[11] 
<= 9)  
{ 

Throttle  = 100 * buffer[0] + 10 * buffer[1]   + buffer[2]; 
Yaw       = 100 * buffer[3] + 10 * buffer[4]   + buffer[5]; 
Pitch      =  100 * buffer[6] + 10 * buffer[7]  + buffer[8]; 

  Roll       =  100 * buffer[9] + 10 * buffer[10] + buffer[11]; 
      } 
   } 
   Serial.flush(); 
   if (Throttle >= 155)  Throttle = 155; 
   if (Roll >= 156)      Roll     = 156; 
   if (Pitch >= 156)     Pitch    = 156; 
   if (Yaw >= 154)       Yaw      = 154; 
   digitalPotWrite(0, Throttle); 
   digitalPotWrite(1, Yaw); 
   digitalPotWrite(2, Pitch); 
   digitalPotWrite(3, Roll); 
} 
 
void digitalPotWrite(int address, int value)  
{ 
   digitalWrite(slaveSelectPin, LOW); 
   SPI.transfer(address); 
   SPI.transfer(value); 
   digitalWrite(slaveSelectPin, HIGH); 
} 
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void activateDrone()  //  “#” 
{   
   for (int i = 0; i <= 155; i++) { 
    digitalPotWrite(0, i); 
    delay(15); 
   } 
   for (int ii = 0; ii < 155 ; ii++)  

{ 
      digitalPotWrite(0, 155 - ii); 
      delay(15); 
   } 
} 
 
void Calibrate()  //    “)” 
{     
   digitalPotWrite(0, 0); 
   digitalPotWrite(1, 0); 
   digitalPotWrite(2, 156); 
   digitalPotWrite(3, 156); 
   delay(3000); 
   digitalPotWrite(0, 0); 
   digitalPotWrite(1, 75); 
   digitalPotWrite(2, 77); 
   digitalPotWrite(3, 77); 
} 
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APPENDIX G.  PROCESSING CODE FOR COLOR TRACKING 

// Learning Processing - Daniel Shiffman 
// http://www.learningprocessing.com 
 
import processing.video.*; 
 
Capture video; 
color trackColor;  
 
void setup()  
{ 

  size(320, 240); 
  video = new Capture(this, width, height); 
  video.start(); 
  trackColor = color(255, 0, 0); 

} 
 
void captureEvent(Capture video)  
{ 
    video.read(); 
} 
 
void draw()  
{ 
   video.loadPixels(); 
   image(video, 0, 0); 
   float worldRecord = 500;  
 
   int closestX = 0; 
   int closestY = 0; 
 
   for (int x = 0; x < video.width; x ++ )  
 { 
      for (int y = 0; y < video.height; y ++ )  
  { 
         int loc = x + y*video.width; 
         color currentColor = video.pixels[loc]; 
         float r1 = red(currentColor); 
         float g1 = green(currentColor); 
         float b1 = blue(currentColor); 
         float r2 = red(trackColor); 
         float g2 = green(trackColor); 
         float b2 = blue(trackColor); 
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         float d = dist(r1, g1, b1, r2, g2, b2);  
         if (d < worldRecord)  
   { 
            worldRecord = d; 
            closestX = x; 
            closestY = y; 
         } 
      } 
   } 
 
   if (worldRecord < 10)  
 {  
      fill(trackColor); 
      strokeWeight(4.0); 
     stroke(0); 
      ellipse(closestX, closestY, 16, 16); 
   } 
} 
 
void mousePressed()  
{ 
   int loc = mouseX + mouseY*video.width; 
   trackColor = video.pixels[loc]; 
} 
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APPENDIX H.  PROCESSING CODE FOR DRONE CONTROL 
WITH ONE WEBCAM 

import processing.video.*; 
import processing.serial.*; 
 
Capture video; 
Serial myPort;   
 
color trackColor=1;  
float threshold = 30;               // color threshold 
float distThreshold = 35;         // distance between two blobs  
float Ltargetsize= 6500;          // Largest target detected 
float Stargetsize= 10;             // Smallest target detected 
 
 
ArrayList<Blob> blobs = new ArrayList<Blob>(); 
boolean recording = false; 
boolean trackingON = false; 
boolean red_target_window=false; 
 
float scopeSize=820;    
 
float setX=320; 
float setY=400; 
 
String numberToSend; 
String dos=“075”; 
String tres=“077”; 
String aa1,aa2,aaToSend; 
 
float lastTime; 
float OutputT = 65; 
float errSumT, lastErrorT; 
float KpT = 0.03;  
float KiT = 0.04; 
float KdT = 0.031; 
 
Float baseSpeed=70.0; 
Float lastSpeed=0.0; 
int maxThrottle = 155; 
float SampleTime = 100; 
 
float OutputR = 77; 
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float errSumR, lastErrorR; 
float KpR = 0.03;  
float KiR = 0.0; 
float KdR = 0.0; 
Float baseRoll=77.0; 
int maxRoll = 156; 
 
void setup()  
{ 
   size(640, 400); 
   myPort = new Serial(this, “/dev/tty.usbmodem14241,” 115200); 
   video = new Capture (this, 640, 400, “Microsoft® LifeCam HD-3000 #2,” 30); 
   video.start(); 
   trackColor = color(255, 0, 0); 
} 
 
void captureEvent(Capture video)  
{ 
   video.read(); 
} 
 
void keyPressed()  
{ 
   if (key == ‘a’) { 
      distThreshold+=5; 
   } else if (key == ‘z’) { 
      distThreshold-=5; 
   } 
   if (key == ‘s’) { 
      threshold+=5; 
   } else if (key == ‘x’) { 
      threshold-=5; 
   } 
   if (key == ‘d’) { 
     Ltargetsize+=20; 
   } else if (key == ‘c’) { 
      Ltargetsize-=20; 
   } 
   if (key == ‘f’) { 
      Stargetsize+=20; 
   } else if (key == ‘v’) { 
      Stargetsize-=20; 
   } 
   if (key == ‘r’ || key == ‘R’) { // video  recording 
      recording =! recording; 
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   } 
 
   if (key == ‘g’ || key == ‘G’) KpT = KpT + 0.01; 
   if (key == ‘b’ || key == ‘B’) KpT = KpT - 0.01; 
   if (key == ‘h’ || key == ‘H’) KiT = KiT + 0.001;   
   if (key == ‘n’ || key == ‘N’) KiT = KiT - 0.001;   
   if (key == ‘j’ || key == ‘J’) KdT = KdT + 0.001;   
   if (key == ‘m’ || key == ‘M’) KdT = KdT - 0.001;   
   if (key == ‘k’ || key == ‘K’)  baseSpeed = baseSpeed + 1.0;   
   if (key == ‘,’)                 baseSpeed = baseSpeed - 1.0; 
   if (key == ‘o’)                myPort.write(35); 
 
   if (KpT<=0)KpT=0; 
   if (KiT<=0)KiT=0; 
   if (KdT<=0)KdT=0; 
 
   if ((keyCode == UP))   setY-=10; 
  if ((keyCode == DOWN)) setY+=10; 
   if ((keyCode == LEFT)) setX-=10; 
   if ((keyCode == RIGHT)) setX+=10; 
   if (setX>=width) setX=width; 
   if (setX<=0)     setX=0; 
   if (setY>=height) setY=height; 
   if (setY<=0)     setY=0; 
 
 
   if (key == ‘P’ || key == ‘p’) { // give or take control to auto-traking 
      trackingON =! trackingON; 
      if (!trackingON) scopeSize=820; 
   } 
} 
 
void draw()  
{ 
   float ping = millis(); 
   video.loadPixels(); 
   image(video, 0, 0); 
   blobs.clear();   
   
 for (int x = 0; x < video.width; x++ ) { 
      for (int y = 0; y < video.height; y++ ) { 
        int loc = x + y * video.width; 
        color currentColor = video.pixels[loc]; 
        float r1 = red(currentColor); 
        float g1 = green(currentColor); 
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        float b1 = blue(currentColor); 
        float r2 = red(trackColor); 
        float g2 = green(trackColor); 
        float b2 = blue(trackColor); 
        float d = distSq(r1, g1, b1, r2, g2, b2);  // color distance 
 
        if (d < threshold*threshold) { 
           boolean found = false; 
           for (Blob b : blobs) { 
             if (b.isNear(x, y)) { 
               b.add(x, y); 
              found = true; 
              break; 
            } 
        } 
 
        if (!found) { 
          Blob b = new Blob(x, y); 
          blobs.add(b); 
        } 
      } 
    } 
  } 
  for (Blob b : blobs) { 
     if ((b.size() > Stargetsize) && (b.size() < Ltargetsize)) {    
       float [] delta=b.show();     
 
 //=PID CONTROL            
       
      if (trackingON) { 
         float now = millis(); 
         float timeChange = (now - lastTime); 
          if (timeChange >= SampleTime) { 
 //===PID THROTTTLE 
           float errorT = setY - delta[1]; 
           errSumT += errorT*KiT; 
           if (errSumT > maxThrottle) { 
             errSumT = maxThrottle; 
           } else if (errSumT<=0) { 
             errSumT=0; 
           } 
           float dInputT = (errorT - lastErrorT); 
 
           if (errorT<0) { 
             OutputT = baseSpeed + (-1)*(KpT * errorT + errSumT - KdT * dInputT); 
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 } else { 
             OutputT = baseSpeed -1; 
           } 
 
           lastErrorT = errorT; 
 
           if (OutputT<=0) OutputT=0; 
           if (OutputT>=155) OutputT=155; 
 
    //=PID ROLL 
          float errorR = setX - delta[0]; 
          errSumR += errorR*KiR; 
          if (errSumR > maxRoll) { 
             errSumR = maxRoll; 
          } else if (errSumR<=0) { 
              errSumR=0; 
          } 
          float dInputR = (errorR - lastErrorR); 
 
          OutputR = baseRoll + (KpR * errorR + errSumR - KdR * dInputR); 
 
          if (OutputR<=0) OutputR=0; 
          if (OutputR>=156) OutputR=156; 
           
          lastErrorR = errorR; 
          lastTime = now; 
          lastSpeed = OutputT; 
           
        } 
      } 
      else{ 
         aa1 = nf(int(lastSpeed),3); 
         aa2 = “075077077”; 
         aaToSend = aa1 + aa2; 
         myPort.write(aaToSend); 
         delay(100); 
      } 
 
      
print(“PosX\t”+int(delta[0])+”\tPosY\t”+int(delta[1])+”\tSetX”+”\t”+setX+”\tSetY”+”\t”
+setY+”\tbaseSpeed\t”+baseSpeed+”\n”); 
print(“KpT\t”+KpT+”\tKiT\t”+KiT+”\tKdT\t”+KdT+”\tErrorT\t”+lastErrorT+”\n”); 
print(“KpR\t”+KpR+”\tKiR\t”+KiR+”\tKdR\t”+KdR+”\tErrorR\t”+lastErrorR+”\n”); 
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 String a1 = nf(int(OutputT), 3); 
       String a4 = nf(int(OutputR), 3); 
 
       numberToSend=a1 + dos + tres + a4; 
 
       print(“Output\t” + numberToSend + “\n”); 
 
       myPort.write(numberToSend);   
     } 
  } 
 
   
  rectMode(CENTER); 
  textSize(12);  
  rect(50, 80, sqrt(Ltargetsize), sqrt(Ltargetsize)); 
  rect(40, 180, sqrt(Stargetsize), sqrt(Stargetsize)); 
  textAlign(LEFT); 
  text(“Target smaller than: “ + Ltargetsize, 10, 15); 
  text(“Target bigger  than: “ + Stargetsize, 10, 150); 
  textAlign(RIGHT); 
  text(“distance threshold: “ + distThreshold, width-10, 15); 
  line(width-20, 30, width-distThreshold, 30); 
  text(“color threshold: “ + threshold, width-10, 50); 
  fill(0); 
 
  stroke(255, 0, 0); 
  line(width/2-30, height/2, width/2+30, height/2); 
  line(width/2, height/2-30, width/2, height/2+30); 
  rectMode(CENTER); 
  noFill(); 
  rect(width/2, height/2, width-2*scopeSize, height-scopeSize, 40); 
 
  smooth(); 
  noStroke(); 
  fill(255, 0, 0); 
  rect(setX, setY, 10, 10); 
 
  //record screen 
  if (recording) { 
     stroke(0, 255, 100); 
     fill(0, 255, 0); 
     saveFrame(“output/gol_####.png”); 
     textSize(30); 
     text(“REC,” 80, 350); 
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  } 
  if (trackingON) { 
     textSize(30); 
     stroke(0, 255, 0); 
     fill(0, 255, 0); 
     text(“ON,” 80, 270); 
  } 
  delay(100); 
  float pong = millis(); 
  //println(“Loop time = “ + (pong-ping)); 
} 
 
float distSq(float x1, float y1, float x2, float y2) { 
   float d = (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1); 
   return d; 
} 
 
float distSq(float x1, float y1, float z1, float x2, float y2, float z2) { 
   float d = (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) +(z2-z1)*(z2-z1); 
   return d; 
} 
 
void mousePressed() { 
  // Save color where the mouse is clicked in trackColor variable 
   int loc = mouseX + mouseY*video.width; 
   trackColor = video.pixels[loc]; 
} 
 
class Blob { 
   float minx; 
   float miny; 
   float maxx; 
   float maxy; 
 
  Blob(float x, float y) { 
     minx = x; 
     miny = y; 
     maxx = x; 
     maxy = y; 
  } 
 
  float [] show() {    // shows a square around the target 
     stroke(0, 255, 0); 
     noFill(); 
     strokeWeight(4); 
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     rectMode(CORNERS); 
     rect(minx, miny, maxx, maxy); 
    return new float [] {(minx+maxx)/2, (miny+maxy)/2};   
  } 
 
  void add(float x, float y) { 
     minx = min(minx, x); 
     miny = min(miny, y); 
     maxx = max(maxx, x); 
     maxy = max(maxy, y); 
  } 
 
  float size() { 
     return (maxx-minx)*(maxy-miny); 
  } 
 
  boolean isNear(float x, float y) { 
     float cx = (minx + maxx) / 2; 
     float cy = (miny + maxy) / 2; 
     float d = distSq(cx, cy, x, y); 
     if (d < distThreshold*distThreshold) { 
        return true; 
     } else { 
        return false; 
     } 
  } 
} 
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